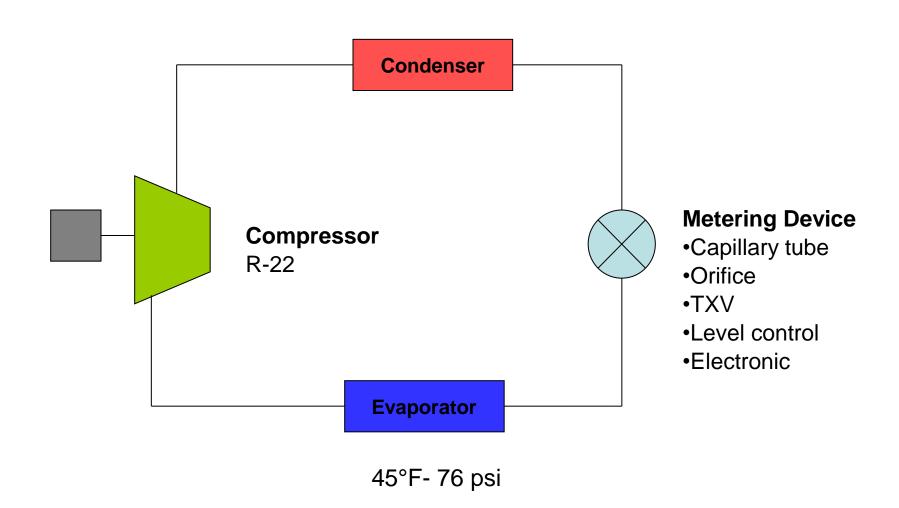

ASHRAE Boston Chapter Meeting Refrigerant Update November 10, 2015

Outline


- Refrigerant cycle- 10 minutes
- Ozone depletion- 10 minutes
- Global warming- 5 minutes
- Refrigerant terminology- 10 minutes
- Temperature glide- 10 minutes
- Refrigerant phase-out- 5 minutes
- Review of EPA SNAP form- 10 minutes
- Quiz and Questions- 5 minutes

Basic Refrigeration System Air-cooled Water-cooled Evaporative Condenser Compressor Scroll Reciprocating **Metering Device** Helical rotary (screw) Centrifugal Capillary tube Orifice •TXV Level control **Prime Mover** Electronic Motor Engine **Evaporator** Steam Turbine Air cooling coil •Shell & tube (liquid chiller) Special (process)

Basic Refrigeration System

100°F-195 psi

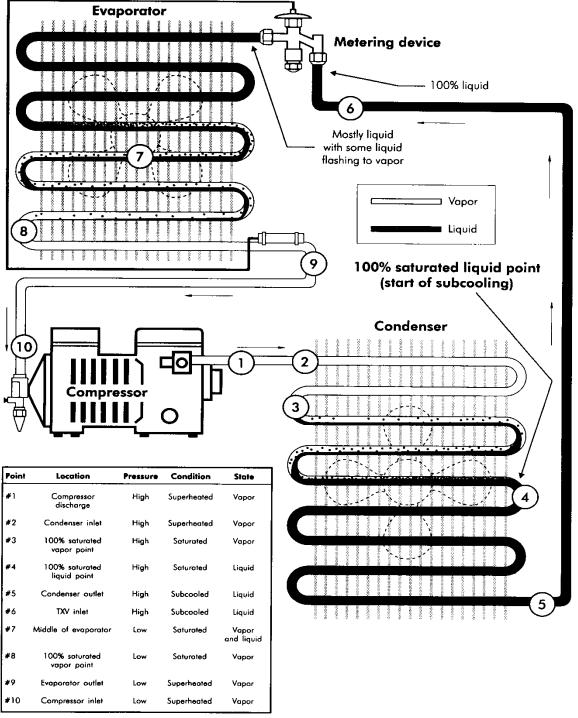
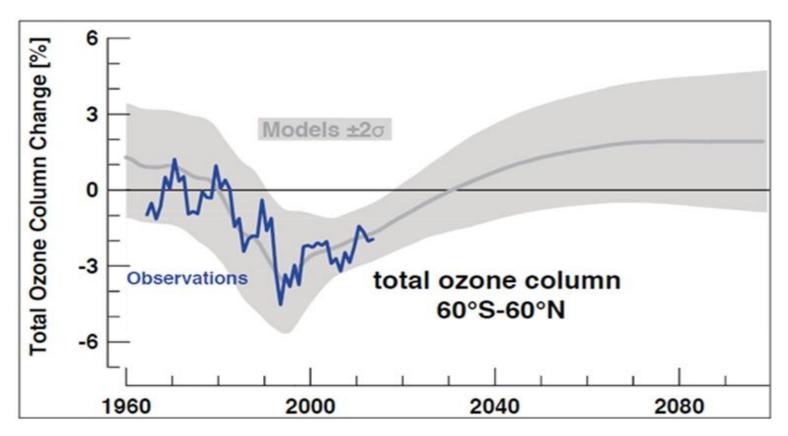
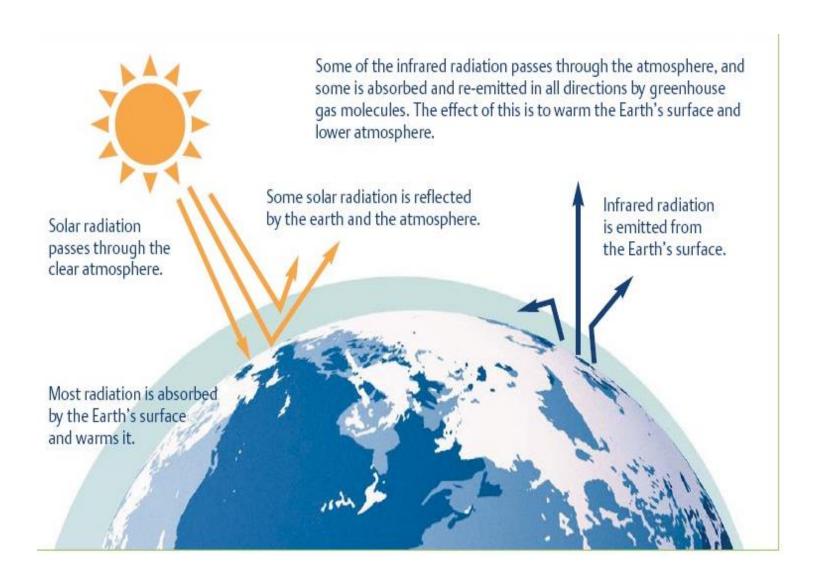


Figure 1-8. Basic refrigeration system showing refrigerant pressures, states, and condition locations


Ozone Depletion

- Bad Ozone Tropospheric 0 to 7 miles above Earth
- Good Ozone Stratosphere 7 to 30 miles above Earth
- Tropospheric Ozone
 - Caused from sun acting on air contaminants causing smog
- Stratospheric Ozone
 - Filters ultraviolet rays UV shielding
 - Earth of ultraviolet radiation, fortunately, 90% of ozone is found here
 - Types of radiation
 - UV-A not harmful
 - UV-B harmful if not filtered in stratosphere
 - UV-C not harmful

Stratospheric Ozone Depletion


Montreal Protocol's Positive Impact on Ozone Hole

Ozone hole still large, but healing; full recovery expected ~2070

Source: NASA. Image from Nov. 2, 2014

Global Warming

Desired Refrigerant Properties

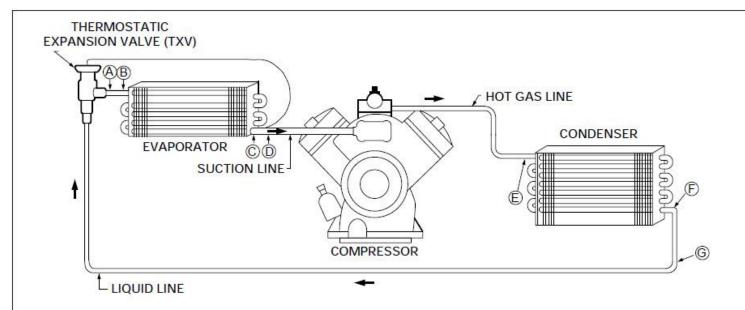
- > Environmentally Acceptable
- Non-toxic
- > Non-flammable
- High latent heat of vaporization
- > Chemically stable
- Material of construction compatible
- Lubricant soluble
- Low moisture solubility
- High dielectric strength
- Ease of transport handling
- Capable of recycling
- Detectable at low concentrations
- Reasonable cost
- > Readily available
- > Field system charging capability

REFRIGERANT ACRONYMS

CFCs - Chlorofluorocarbons

- Atmospheric Life of 75 to 120 years
- High ODP (Ozone Depletion Potential)
- CFC-11, 12, 113, 114, 115 (and many more)

HCFCs - Hydro chlorofluorocarbons


- Have shorter atmospheric lives
- Less chlorine than CFCs
- HCFC-22, 124, 123

HFCs - Hydro fluorocarbons

- Have shorter atmospheric lives
- Have "zero" ozone depletion potentials
- Contain no chlorine atoms
- HFCs are: HFC-134a, 152a, 125, 143a, 32

Azeotrope vs Blend

- Azeotrope- a mixture of 2 or more refrigerants that act as one
 - One boiling and one condensing temp
 - Example is R410A
- Blend- a mixture of 2 or more refrigerants that do not chemically combine
 - Must be charged as a liquid
 - Can leak out of a system in different quantities
 - Has a temperature glide

Evaporator at 12 psig for Suva® MP39 and CFC-12

		Suva® MP39	CFC-12
(A)	Saturated liquid at evaporator pressure	-2.5	5
B	Evaporator inlet (liquid/vapor mixture)	1.0	5
0	Evaporator exit (saturated vapor)	9.0	5
0	Compressor suction (superheated vapor)	14.0	14
	Average Evaporator Temperature:	5.0	5
	Evaporator Temperature Glide:	8.0	0
	Amount of Vapor Superheat at (D):	5.0	9

Temperature, °F

Temperature, °F

Condenser at 163 psig for Suva® MP39; at 142 psig for CFC-12

		Suva® MP39	CFC-12
€ C	ondenser inlet (saturated vapor)	117	113
(F) C	ondenser exit (saturated liquid)	109	113
Ğ Li	quid line to TXV (subcooled liquid)	104	104
	Average Condenser Temperature:	113	113
	Condenser Temperature Glide:	8	0
	Amount of Liquid Subcool at (6):	5	9

Phase-out

- 9/87- Montreal Protocol Signed
- 1/96- CFC production stopped
- 2010- No new R-22 equipment made
- 2020- No new R-22 for service
- 2020- No new R-123 equipment

View EPA Snap PDF

Questions

- 1. What year was the Montreal Protocol signed?
- 2. What does CFC stand for?
- 3. What does HCFC stand for?
- 4. What does HFC stand for?
- 5. What was the last year new equipment using R-22 was manufactured?
- 6. How does ozone help us?
- 7. How does ozone hurt us?
- 8. Name 3 desirable properties of a refrigerant.
- 9. What is an Azeotrope?
- 10. What is a temperature glide?